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Introduction
Training a robust cooperative agent that can work with unseen
agents is useful. However, training such a robust agent requires
diverse training partner agents. In spite of its importance,
obtaining diverse partners is still an open problem. Many prior
works propose to generate diverse agents by changing the
state-action distribution [1] or joint trajectory distribution
[2,3] of the agents. However, changes in such distribution
might not lead to high-level behavioral difference [3].
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Learning incompatible policies (LIPO)
In this work, we propose an alternative way to diversify
behaviors using information from the task’s objective.
Specifically, LIPO trains incompatible policies to generate
diverse agents. We show theoretically that incompatible
policies are not similar to each other.

LIPO objective
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is not similar 𝜋𝐵. Through our theoretical results, we know that

incompatible policies are not similar. Therefore, we propose
that such a policy 𝜋𝐴 can be learned by maximizing the self-play

return while minimizing the cross-play return

max
𝜋𝐴

𝒥𝑆𝑃 𝜋𝐴 − 𝜆𝑋𝑃𝒥𝑋𝑃 𝜋𝐴, 𝜋𝐵

Essentially, this objective gives a competent 𝜋𝐴 that is
incompatible with 𝜋𝐵.

LIPO for population-based training

We extend the objective from considering
only two joint policies to a population of 𝑁
joint policies, 𝒫 = 𝜋𝑖 1 ≤ 𝑖 ≤ 𝑁 . For a joint
policy 𝜋𝐴 in a population 𝒫, its objective

now has an aggregated cross-play return
term

max
𝜋𝐴

𝒥𝑆𝑃 𝜋𝐴 − 𝜆𝑋𝑃 ሚ𝒥𝑋𝑃 𝜋𝐴, 𝒫

where ሚ𝒥𝑋𝑃 𝜋𝐴, 𝒫 = max
𝜋𝐵∈𝒫−𝐴

𝒥𝑋𝑃 𝜋𝐴, 𝜋𝐵

𝒫−𝐴 = 𝒫\{𝜋𝐴}

Utilizing a mutual information (MI) objective
It is possible that there exist different behaviors that are fully
compatible. We propose to capture such behavioral variations
by using a mutual information objective. Specifically, we
condition the policy on a latent variable 𝑧 such that 𝜋𝐴 has the
following form

𝜋𝐴 𝑎 𝜏 = 𝔼𝑧1~𝑝 𝑧1 ,𝑧2~𝑝 𝑧2 𝜋𝐴
1(𝑎1|𝜏1|𝑧1) 𝜋𝐴

2(𝑎2|𝜏2|𝑧2)

Then we can maximize the mutual information between
observation-action pair and the latent variable by maximizing
the lower bound of the MI objective [2,4,5]
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Therefore, the overall training objective of a policy 𝒫−𝐴 within a
population 𝒫 is

max
𝜋𝐴,𝜙𝐴

𝒥𝑆𝑃 𝜋𝐴 − 𝜆𝑋𝑃 ሚ𝒥𝑋𝑃 𝜋𝐴, 𝒫 − 𝜆𝑀𝐼
ሚ𝒥𝑀𝐼 𝜋𝐴, 𝜙𝐴

Experimental results

Figure 1: Number of discovered solutions in different population sizes. 

We experiment with two cooperative environments: One-Step
Cooperative Matrix Game (CMG) and Point Mass Rendezvous
(PMR) with two different settings in each environment. In all
scenarios, LIPO can find more solutions than the baselines. LIPO
is also better at discovering sub-optimal solutions that exist in
CMG-S and PMR-L.

Figure 2: Trajectories of agents trained by LIPO with (a,b,c,d) and
without (e,f,g,h) the MI objective in PMR-C. Each row shows four joint
policies produced with a single run of LIPO training. Different colors of
the trajectories correspond to different values of the latent variable.

We investigate further into how the MI objective affects the
behaviors of produced policies. We can see the effect of the MI
objective in the distributions of the trajectories, which exhibit
larger variations given a small MI regularization. With or
without the MI regularization, LIPO discovers all the landmarks
with N=4.

Discussion
An agent trained with LIPO are incentivized to act
adversarially toward agents that behave differently from
itself. This behavior might not be desirable for certain
downstream tasks. For example, agents produced by LIPO
might not be suitable for interacting with humans as they
would refuse to conform with the user. However, we believe
that training an adaptive agent with these agents, which is the
main motivation of this work, would have an opposite effect,
in that the adaptive agent would try to comply with what its
current partner is doing. We are investigating this potential
benefit, and we will include the result in our future work.
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